A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction
نویسندگان
چکیده
One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not straightforward and often omitted by practitioners in favor of an out-of-sample (OOS) evaluation. In this paper, we show that the particular setup in which time series forecasting is usually performed using Machine Learning methods renders the use of standard K-fold CV possible. We present theoretical insights supporting our arguments. Furthermore, we present a simulation study where we show empirically that K-fold CV performs favorably compared to both OOS evaluation and other time-series-specific techniques such as non-dependent cross-validation.
منابع مشابه
A note on the validity of cross-validation for evaluating autoregressive time series prediction
One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not straightforward and often omitted by practitioners in favour of an out-of-sample (OOS) evaluation. In...
متن کاملEvaluating the Validity of Quasi-Static Analysis for Prediction of Vessel Mooring Line Forces
Quasi-Static analysis of moored vessels is vastly used for engineering designs, as a substitute to the numerical simulation of dynamic mooring analysis. Yet, the level of validity of the results of quasi-static analysis is a matter of discussion. In the present study, the validation of the assumptions behind the quasi-static analysis of mooring vessels is examined with application of a dynamic ...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملRisk prediction based on a time series case study: Tazareh coal mine
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015